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Kosterlitz-Thouless melting of magnetic order in
the triangular quantum Ising material TmMgGaO4

Han Li1, Yuan Da Liao2,3, Bin-Bin Chen 1,4, Xu-Tao Zeng1, Xian-Lei Sheng 1, Yang Qi 5,6✉,

Zi Yang Meng2,7,8✉ & Wei Li 1,9✉

Frustrated magnets hold the promise of material realizations of exotic phases of quantum

matter, but direct comparisons of unbiased model calculations with experimental measure-

ments remain very challenging. Here we design and implement a protocol of employing

many-body computation methodologies for accurate model calculations—of both equilibrium

and dynamical properties—for a frustrated rare-earth magnet TmMgGaO4 (TMGO), which

explains the corresponding experimental findings. Our results confirm TMGO is an ideal

realization of triangular-lattice Ising model with an intrinsic transverse field. The magnetic

order of TMGO is predicted to melt through two successive Kosterlitz–Thouless (KT) phase

transitions, with a floating KT phase in between. The dynamical spectra calculated suggest

remnant images of a vanishing magnetic stripe order that represent vortex–antivortex pairs,

resembling rotons in a superfluid helium film. TMGO therefore constitutes a rare quantum

magnet for realizing KT physics, and we further propose experimental detection of its

intriguing properties.
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Kosterlitz–Thouless (KT) physics bestows interesting
mechanism of phase transition upon two-dimension (2D)
interacting system with a continuous symmetry. Although

such symmetry is not allowed to break spontaneously at any finite
temperature1, phase transition can still take place from the high-
temperature disordered phase to a KT phase with quasi-long-
range order, which has a topological root in the binding of the
vortex and antivortex pair2,3. Experimentally, the KT transition
has been observed in thin helium films4 and ultracold 2D Bose
gases5,6, etc. Two distinct types of elementary excitations, i.e.,
phonons and rotons, play essential roles in the related superfluid
phenomena7,8, and they are important for understanding liquid
helium thermodynamics9. Besides interacting bosons in liquid
and gas, there are also theoretical proposals of KT transitions in
solid-state magnetic systems such as the 2D classical XY2,3 and
the frustrated quantum Ising models10. However, to date, the
material realization of the KT transition in 2D magnets has rarely
been reported.

In the mean time, the search of exotic quantum magnetic
states in the triangular-lattice spin systems—the motif of fru-
strated magnets—has attracted great attention over the decades.
Experimentally, the triangular-lattice quantum magnets have
been synthesized only very recently, including compounds
Ba3CoSb2O9

11–14, Ba8CoNb6O24
15,16, and a rare-earth oxide

YbMgGaO4—which has been suggested as a quantum spin liquid
candidate17–20—whereas an alternative scenario of glassy and
disorder-induced state has also been proposed recently21–23.
On the other hand, an Ising-type triangular antiferromagnet
TmMgGaO4 (TMGO, with Yb3+ replaced by another rare-earth
ion Tm3+)24–26, as shown in Fig. 1a and explained in details in
this study, is the successful material realization of a quantum
magnet with strong Ising anisotropy.

In this work, we construct the microscopic model of TMGO
and employ two state-of-the-art quantum many-body simulation
approaches: the exponential tensor renormalization group
(XTRG)27 and quantum Monte Carlo (QMC) equipped with
stochastic analytic continuation (QMC-SAC)28–32, to calculate
both the thermodynamic and dynamic properties. By scanning
various parameters and fit our simulation results to the existing
experimental data24–26, we find TMGO realizes a triangular-
lattice transverse-field Ising model and determine accurately its
model parameters. Based on this, we conclude that TMGO should
host the celebrated KT phase and further predict several promi-
nent features to be observed in TMGO, inspired by the experi-
mental measurements for detecting KT physics in a superfluid
thin film4. It is worthwhile to point out that our calculation of
quantum fluctuations goes beyond the linear spin-wave approx-
imation in ref. 26 and puts the system in the clock-ordered (later
melted through KT transitions), rather than disordered, regime.
Therefore, our methods and results do not only explain the
experimental findings but, more importantly, establish a protocol
for acquiring equilibrium and dynamic experiments of strongly
correlated quantum materials, such as TMGO, in an unbiased
manner.

Results
Microscopic spin model. Due to strong spin–orbit coupling and
crystal electric field splitting, TMGO can be described as an
effective spin-1/2 model with strong easy-axis anisotropy, i.e., a
triangular-lattice Ising model (TLI), as shown in Fig. 1a. First-
principle calculations of the TMGO material are performed based
on the density functional theory (DFT)33–36 where we see a
large easy-axis anisotropy of room-temperature energy scale. By
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Fig. 1 The crystal structure, phase diagram, and spin texture in quantum magnet TMGO. a The Tm3+ ions, with an energy splitting Δ between
two lowest non-Kramers levels |Φ±i constitute an effective spin-1/2 model on the triangular lattice, with J1 and J2 interactions. An illustration of spin
structure in the clock phase is provided, where the spin-up and spin-down arrows are along the magnetic easy c-axis and the horizontal arrow stands for
superposition of spin up and down, i.e., !j i. b The schematic phase diagram of quantum TLI model, there exists a quantum critical point on the horizontal
axis with emergent spin XY (i.e., U(1)) symmetry, which extends into an intriguing KT phase at finite T. Δ >Δ0 stands for transverse fields where the
clock order is stabilized in the ground state, in the J1–J2 model with small J2 coupling. The vertical arrowed line along Δ= 0.54J1 represents the TMGO
material, with two KT transitions at Th and Tl, respectively. c The magnetic stripe order, with the red sites for spin up (mz= 1∕2) and blue ones spin down
(mz=−1/2) on three sublattices A, B, and C. The pseudo spins, i.e., complex order parameters ψ in Eq. (2), are plotted as arrows rotating within the plane,
and a vortex-antivortex pair is created by flipping simultaneously two spins within the red oval in the left subpanel. As tracked along the paths (exemplary
paths are indicated in the plot), topological charge C= ±1, corresponding to 2π clockwise/counterclockwise angle, emerges when the pseudo spins wind
clockwise around the vortex/antivortex, and zero vorticity appears when counting the pseudo-spin winding of both (or no defect at all).
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comparing the DFT energies of antiferromagnetic spin config-
uration with a ferromagnetic one, one finds the former has a
lower energy and the coupling strength can be estimated as a few
tenths of meV. Density distribution of 4f electrons in TMGO
can also be obtained, where it is observed that the 4f electrons of
Tm3+ are coupled via superexchange mediated by 2p electrons of
O2− within the triangular-lattice plane (Supplementary Note 1).

In ref. 25, the authors took the lowest two levels Φ±j i of Tm3+

as non-Kramers doublet and construct a classical TLI with both
nearest-neighbor (NN) and next-nearest-neighbor (NNN) inter-
actions to account for the absence of zero-point entropy observed
in experiments. Substantial randomness was also introduced to
explain the smooth magnetization curves even at a very low
temperature. Later on, inelastic neutron scattering (INS) results
of TMGO reveal a clear magnon band26, suggesting the influence
of coupling randomness should be modest in TMGO and
an adequate modeling of the material shall include in the
Hamiltonian non-commuting terms with quantum fluctuations.
As the Kramers theorem is absent in Tm3+ system with total
angular momentum J= 6, a small level splitting Δ between the
quasi-doublet Φ±j i is involved, as shown in Fig. 1a. Therefore, a
quantum TLI model was proposed26, with spin-1/2 Hamiltonian

HTLI ¼ J1
X
hi;ji

Szi S
z
j þ J2

X
hhi;jii

Szi S
z
j �

X
i

ðΔSxi þ h gkμB Szi Þ; ð1Þ

where 〈,〉 hh; iið Þ stands for NN (NNN) couplings J1 (J2), Δ the
energy splitting between Φ±j i (i.e., the intrinsic transverse field),
and h is the external magnetic field. g∥= 2JgJ constitutes the
effective spin-1/2 g factor, with gJ the Landé factor.

The phase diagram of quantum TLI has been studied intensively
with analytic and numeric methods in the past10,37–39, and is
schematically shown in Fig. 1b. We indicate the TMGO model

parameter with the vertical arrow (the determination of para-
meters is given below). From high to low temperatures, the system
first goes through an upper KT transition at Th from the
paramagnetic phase to a KT phase with power-law (algebraic) spin
correlations. At a lower temperature Tl, the system enters the clock
phase with a true long-range order depicted in Fig. 1a. This three-
sublattice clock order breaks the discrete lattice point group and
the Z2 spin symmetries, giving rise to a low but finite transition
temperature Tl.

Increasing the next-nearest-neighbor coupling J2, say, at J2/J1=
0.2, we find the static magnetic structure factor develops a stripe
order40 with structure factor peak at M point (see, e.g., Fig. 4a) of
the Brillouin zone (BZ) (see Supplementary Notes 2 and 3). This
magnetic stripe order, as shown in Fig. 1c, has been observed
previously in TLI material AgNiO2, where J2 coupling is relatively
strong (~0.15J1, along with other interactions) and the exotic KT
physics is absent there41. In TMGO, however, the clock order wins
over the stripe order as J2 ∕ J1≃ 0.05 is relatively small in this
material. Nevertheless, as will be shown below, a ghost of the
stripe order—the M rotonlike modes—remains in the spin
spectrum26, which turns out to be related to a vortex–antivortex
pair excitation in the topological language (see Discussion section).

Thermodynamics and parameter fittings. The model parameters
in Eq. (1) can be accurately determined through fitting the
available experimental data of TMGO24–26, from which we find
J1= 0.99 meV, J2= 0.05J1, Δ= 0.54J1 and g∥= 13.212. We pre-
sent in Fig. 2 the calculated thermodynamic quantities and their
experimental counterparts25,26, where excellent agreements are
seen. In Fig. 2a, at T > 30 K, the magnetic entropy Sm approaches
Rln 2, corresponding to the high-temperature paramagnetic phase
with effective spin-1/2. As temperature decreases, Sm gradually
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Fig. 2 Thermodynamic measurements and XTRG fittings to experimental results. Agreements between the experimental curves (taken from various
independent measurements24–26) and numerical results can be seen in all panels, down to very low temperatures. a Includes two experimental entropy
curves under fields h= 0 and 5 kOe25,26, and the specific heat data shown in b are under zero field. The magnetic susceptibility χ is shown in c, which
follows first the Curie-Weiss law at high temperature, i.e., χ ~ C/(T−Θ) with Θ≃−19 K (see Supplementary Note 5) and then exhibits at ~10 K a shoulder
structure, signifying the onset of antiferromagnetic correlation. For T ≲ T�

h � 4 K, χ rises up again and eventually converges to a finite value as T decreases
to below T�

l � 1 K. These anomalous susceptibility curves can be fitted very well by our simulations and naturally understood within the TLI model. For the
magnetization curves in d, the perfect consistency between numerics and experiments hold for both intermediate-T (≃2 K) and the low-T (40–60mK)
curves. The latter is shown in the inset, where a quasi-plateau at M ’ 1

3Msat becomes prominent, with Msat= JgJμB the saturation magnetization of TMGO.
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releases throughout the intermediate-temperature regime and
approaches zero below T�

l ’ 1 K, as the long-range clock order
develops. In Fig. 2b, the very good agreement in magnetic-specific
heat Cm extends from high T (~30 K) all the way down to low
temperature T ~ 1 K.

In the fittings of the magnetic entropy and specific heat curves
in Fig. 2a, b, we rescale the T-axes (in the unit of J1) to lay the
model calculations on top of the experimental measurements, and
in this way we find the optimized J1= 0.99 meV. In both plots,
the y-axes scaling ratios are associated with the ideal gas constant
R= 8.313 J mol−1 K−1 and thus fixed. In Fig. 2c, we fit the
magnetic susceptibility χðhÞ ¼ MðhÞ

h , with M(h) the uniform
magnetization (per Tm3+), under external fields of a small value
h= 1 kOe and a larger one 10 kOe. As shown in Fig. 2c, by setting
the effective Landé factor g∥= 13.212, we fit both susceptibility
curves very well. This completes the model parameters in the
Hamiltonian Eq. (1) (see more fitting details in Supplementary
Note 4) and note this parameter set also leads to accurate entropy
results at 5 kOe when put in a direct comparison with the
experimental data in Fig. 2a.

With the parameters J1, J2, Δ, and g∥ determined from the
above fittings, we can compute the magnetization curve M(h) and
compare it directly with several independently measured experi-
mental curves in Fig. 2d. It is noteworthy that there exists a
turning point at about 1/3 magnetization, under a magnetic field
around 20–25 kOe. It becomes clearer as T decreases further
down to 40 mK (see the inset of Fig. 2d), suggesting the existence
of field-induced quantum-phase transition in TMGO. This sharp
change of behaviors can also be witnessed in the specific heat
curves under various magnetic fields (see Supplementary Note 6),
which can also be understood very well within the set of
parameters obtained above.

Lastly, we briefly discuss the scalings in the uniform suscept-
ibility χ in Figs. 2c and 3, where susceptibility curves under more
external fields are computed theoretically in the latter plot as a
complementary. These χ data reflect the two-step establishment of
magnetic order as T lowers. As pointed out in refs. 42,43, a universal

scaling χ(h)= h−α appears for small fields h with α ¼ 4� 18ηðTÞ
4� 9ηðTÞ in

the KT regime, where ηðTÞ 2 ½19 ; 29� is the anomalous dimension
exponent of the emergent XY-order parameter varying with
temperature. For T= Tl, η ¼ 1

9 and χ(h) ~ h−2/3, which diverges as
h approaches zero, whereas above some higher temperature T�

h ,
η ¼ 2

9 and χ(h) remains a constant vs. h. Therefore, at small
external field, the increase of χ at intermediate T reflects the
decrease of η(T) vs. T and such enhancement becomes less
prominent for a relatively larger field, say, h= 10 kOe. This salient
difference indeed can be noticed in the experimental and our
numerical curves in Fig. 2c. Moreover, in Fig. 3 we plot in the
inset susceptibility curves under various magnetic fields h between
6.5 kOe and 9 kOe, where the power-law scaling is shown explicitly
and the anomalous exponent η can be extracted therein.

Spin spectra and magnetic structure factors. Spin frustration
can lead to strong renormalization effects, which in turn gives rise
to interesting spectrum in dynamics. Here we employ the QMC-
SAC approach28–32 to compute the spin spectra S(q, ω) from Sz

spin correlations, at various temperatures (see Methods). The
obtained spectra, with model parameters determined from equi-
librium data fittings, are plotted in Fig. 4 and are compared
directly with the INS results26. Figure 4a depicts the spin spec-
trum inside the clock phase, at a low temperature T= 0.5 K. As
the clock phase is of discrete symmetry breaking, the S(q, ω=
0) at K point signals the Bragg peak of the clock order and
there exists a small gap ~0.1 meV between the ω= 0 and finite ω
spectra, consistent with the INS result. The rotonlike modes are
also clearly present in the QMC-SAC results, with an energy gap
about 0.4 meV, in quantitative agreement with that in ref. 26.

Figure 4b is the QMC-SAC spectrum calculated according to
the parameters (Δ/J1≃ 1.36, J2/J1≃ 0.046) given in ref. 26. As
mentioned in the introduction, we find, via spin structure factor
calculations, that such set of parameters actually put the model in
the disordered paramagnetic phase with Δ > Δc ~ 0.8J1. It is
possible that the fitting scheme adopted in ref. 26 is based on
mean-field treatment and cannot capture the quantum fluctua-
tions inherent to the quantum TLI model and the material
TMGO. This is a clear sign that the unbiased quantum many-
body calculation scheme in our work is the adequate approach to
explain the experimental results.

We continue with the correct parameter set and rise the
temperature to T= 1.45 K in Fig. 4c. It is interesting to see that the
dispersion still resembles that in the clock phase of Fig. 4a but with
a vanishing gap at the K point and softened M roton modes. To
show it more clearly, we plot the intensity at M in Fig. 4d, where the
roton gap gets reduced as T increases, with substantially broadened
linewidths. As M rotonlike excitations can be related to vortex-pair
excitation (see Discussions), this softening of M roton is consistent
with the scenario of vortex proliferations near the upper KT
transition. Such remarkable spectra constitute a nontrivial predic-
tion to be confirmed in future INS experiments.

Besides, the static magnetic structure factor SðqÞ ¼ P
i;j

eiq�ðri�rjÞhSzi Szj i are also simulated, where ri and rj run throughout
the lattice. Figure 5a shows the temperature dependence of SK and
SM, where one observes an enhancement of SM at intermediate
temperature, signifying its closeness towards the stripe order. At
T <T�

l , the enhancement of SM vanishes and instead the SK
intensity becomes fully dominant. Figure 5b–d show the S(q)
results at low (T= 0.57 K), intermediate (T= 2.2 K), and high
temperaure (T= 4.5 K). In the clock phase, S(q) evidently peaks at
the K point, the ordering wavevector of the three-sublattice clock
phase, whereas in the intermediate temperature regime, notably
there exists a “ghost” peak at the M point, manifesting the
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continuation, which agree very well with the QMC-SAC results. The path consists of the Γ-M-K-M-K-Γ loop and a Γ-M-Γ vertical mini-loop, as shown in
the inset. b Spectrum with the parameter set given in ref. 26, which clearly fails to describe the material. In c, we plot in the spin spectra with model
parameters in a but at a higher temperature 1.45 K. Compared with a, the K point gap gets smoothed and the rotonlike gap reduced. We collect the M point
intensity vs. ω and plot in d, where the linewidth near the rotonlike minima is substantially broadened as T increases, suggesting strong fluctuations and
vortex proliferation in the system.
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existence of short-range stripe order selected by thermal
fluctuations. These interesting features are gone at higher
T= 4.5 K, where strong fluctuations considerably weaken the
structure factor peaks.

Discussion
As postulated by Landau, the phonon–roton spectrum play an
essential role in understanding low-T thermodynamics and critical
velocities of superfluidity, etc, in liquid helium, where the rotons
are believed to be related to local vorticity of the fluid7. Roton
constitutes a minima in the spectrum at finite momentum and
energy, and has been regarded as a quantum analog of hydro-
dynamic vortex ring, as coined “the ghost of vanished vortex ring”
by Onsager44. On the other hand, as derived from a trial wave-
function introduced by Feynman8, the roton excitation has energy
ϵq ~ ℏq2/[2m S(q)], with m is the helium atom mass and S(q) the
structure factor peak, and it is therefore also associated with an
incipient crystalization Bragg peak competing with superfluidity45.
Rotonlike excitations are also found in thin helium films46 and
frustrated triangular Heisenberg (TLH) magnets. In the latter case,
M point rotonlike modes were predicted theoretically47–50 and
confirmed in recent experiments13,14, whose nature is under
ongoing investigations51,52. Notably, it has been proposed that the
M rotons in TLH can be softened by further enhancing spin
frustration (and thus quantum fluctuations)52 or thermal fluc-
tuations53, which melts the long-range or incipient semi-classical
120° order, driving the system into liquid-like spin states.

In the frustrated magnet TMGO, as mentioned earlier in Fig. 4,
there exists rotonlike modes with large density of states, which
becomes softened even at low temperatures, melting the clock
order, and strongly influences thermodynamics of the system.
Similar to that in liquid helium, roton in TMGO has also a
topological origin: we demonstrate below that the rotonlike
modes represent bound states of topological vortex excitations,
via a pseudo-spin mapping of the spin stripe order. As shown in
Fig. 1c, the stripe order constitutes a proximate competing order
to the clock state. Although it eventually gets perished in TMGO
at low T, the stripe order leaves a “ghost image” in the excitation
spectrum, i.e., rotonlike dip along the Γ-M-Γ path in Fig. 4a.
Correspondingly, there exists an incipient SM peak in the static
structure factor at intermediate T (Fig. 5c), i.e., ϵq ~ 1/S(q), similar
to rotons in the superfluid helium discussed above8,45.

On top of the spin stripe order, the M rotonlike excitation can
be related to a locally bounded vortex pair, some form of “rota-
tional motion” happening in TMGO. We perform a pseudo-spin
mapping

ψ ¼ mz
A þ ei2π=3 mz

B þ ei4π=3 mz
C; ð2Þ

where ψ= ∣ψ∣eiθ is the complex order parameter37, i.e., the
pseudo-spin. As shown in Fig. 1c, ψ is located in the center of
each triangle, with emergent XY degree of freedom θ. In Eq. (2),
mz

γ ¼ ±1=2 represents the spin-up(-down) of corresponding spin
Sz components at γ-sublattice (γ=A, B, C). This mapping helps
establishing a Landau–Ginzburg theory of TLI10,37 and the clock
order shown in Fig. 1a corresponds to a ferromagnetic order of
pseudo spins.

As shown in Fig. 1c, we create a vortex pair by applying Sx

operator on two adjacent sites to simultaneously flip their spin
orientations. We note that any closed loop enclosing only the
vortex defect (red dot in Fig. 1c) leads to a winding number 1
(modulo 2π), whereas those around the antivortex (black dot) to
−1. Zero winding number can be counted when a pair of defects
(or no defects at all) are enclosed by the loop. Moreover, one can
further move the vortex on the triangular lattice, such as in a
“tight-binding” model, by flipping spins on further neighboring

sites, which naturally leads to a quadratic-type low-energy dis-
persion near M point along Γ-M-Γ (see Supplementary Note 7). As
the ghost peak in Fig. 5c only suggests a short-range stripe cor-
relation, the vortex pair can thus move only within a small cluster
with incipient stripe order, i.e., they are bounded. The vortex pair
only unbinds at the upper KT transition Th where vortices are
proliferated2,3, as seen by the “softening” of M rotonlike mode in
dynamical spectrum in Fig. 4.

To conclude, in this work, we have established a protocol of
understanding and explaining experiments of frustrated magnets
in an unbiased manner, with XTRG and QMC-SAC machinery.
The thermodynamic and dynamic results of TMGO are captured
to great accuracy, thus allowing comprehensive studies of KT
physics therein. At intermediate temperature, the KT phase of
TMGO realizes a magnetic analog of 2D superfluid phase with
several intriguing properties: (i) there emerges a spin XY sym-
metry and correspondingly complex order parameter ψ, which
bears quasi-long-range correlation and phase coherence; (ii) the
finite-T spin spectrum contains the long-wavelength magnon and
competing gapped rotonlike modes near the BZ boundary with
energy signifying the binding of vortex–antivortex pair, which
plays a key role in determining finite-T phase diagram of the
system; (iii) the quasi-long-range XY order melts and the TMGO
becomes paramagnetic as T is above Th, driven by the pro-
liferation of vortex excitations, in analogy to the superfluid
transition in a helium thin film4,54. We note that, different from
the liquid helium, TMGO has two-temperature scales that outline
the intermediate-temperature KT phase. Similar separation of
scales has been seen in other quantum magnetic materials, by
temperature53,55 or spatial dimensions56, but the KT phase is the
first time to be seen. Nevertheless, the T�

l ;T
�
h in the present work

constitute tentative estimated of two KT transition temperatures
roughly from thermodynamics, which still needs to be precisely
determined both numerically and experimentally in the future.

The extraction of anomalous exponents η(T) constitutes another
interesting future study. The exponent η(T) of the KT phase
appears in the algebraic correlations in hSzi Szj i � jri � rjj�ηðTÞ and
seems rather indirect to measure in solid-state experiements.
Nevertheless, as discussed above in Fig. 3, η(T) can be determined
from the uniform susceptibility χ, a routine magnetic quantity in
experiments. Moreover, it would be interesting to check several
distinct predictions of KT physics in this 2D magnetic material.
One renowned phenomenon is the universal jump in superfluid
density at the KT transition57, as observed experimentally in
helium film4. Through calculations of the q-clock model (q = 5, 6),
people have revealed universal jumps in the spin stiffness at both
upper and lower KT transitions58, which certainly is an interesting
prediction to check in TMGO. Dynamically, nuclear magnetic
resonance measurements of relaxation time 1/T1 can be conducted,
which probe signals of low-energy magnetic dissipations at the KT
transition where vortices proliferate. Besides, non-equilibrium
thermodynamics such as thermal transport, would also be very
worthwhile to explore in the TMGO magnet.

Methods
Quantum many-body computations. In this work, we combined two many-body
numerical approaches: QMC37 and XTRG, the latter method is recently introduced
based on matrix product operators (MPOs) and logarithmic temperature scales27.
XTRG is employed to simulate the TLI down to temperatures T < 0.5 K on YCW ×
L geometries up to width W= 9 with various lengths up to L= 12. Both dynamical
and equilibrium properties are simulated, with the purpose of fitting the experi-
mental data and obtaining the right parameters, as well as to make predictions for
experiments. The QMC is performed in the space-time lattice of L × L × Lτ, where
L= 36 and Lτ= β/Δτ with Δτ= 0.05 and β ≡ 1/T. The space-time configuration is
written in the Szi;τ basis with both local and Wolff-cluster updates to overcome the
long autocorrelation time. As the QMC method is standard, we will only introduce
the SAC scheme below and leave the QMC itself to the Supplementary Note 8.
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Exponential thermal tensor network method. For the calculations of equilibrium
properties, we start from a high-T density matrix ρ̂ðΔτÞ ¼ e�ΔτH , whose MPO
representation can be obtained conveniently and accurately (up to machine pre-
cision), at a small Δτ ~ 10−3~−4. One way to obtain such an accurate MPO
representation is to exploit the series-expansion thermal tensor network techni-
que59 via the expansion

ρ̂ðΔτÞ ¼ e�ΔτĤ ¼
XNc

n¼0

ð�ΔτÞn
n!

Ĥ
n
: ð3Þ

Given the ρ̂ðΔτÞ representation, traditionally one evolves ρ̂ðβÞ linear in β to
reach various lower temperatures, i.e., β= LτΔτ increases by a small value Δτ after
each step by multiplying ρ̂ðΔτÞ to the density matrix60. However, this linear
scheme is not optimal in certain aspects, and encounters challenges in
generalization to 2D. Instead, recent study shows that the block entanglement
entropy of MPO is bound by SE ≤ a ln βþ const: at a conformal critical point, with
a an universal coefficient proportional to the central charge27. This suggests an
exponential procedure of performing cooling procedure. Based on this idea, we
have developed the XTRG method, which turns out to be highly efficient in
simulating both one-dimensional (1D) critical quantum chains and various 2D
lattice systems27,53,61.

In XTRG, we cool down the system by multiplying the thermal state by itself,
i.e., ρ0≡ ρ(Δτ), ρ1≡ ρ0 ⋅ ρ0= ρ(2Δτ), thus ρn≡ ρn−1 ⋅ ρn−1= ρ(2nΔτ), and reach the
low-T thermal states exponentially fast. Efficient compression of MPO bonds is
then required to maintain the cooling procedure, where a truncation scheme
optimizing the free energy and in the mean time maintaining the thermal
entanglement, is involved. One advantage of XTRG is the convenience and high
efficiency to deal with long-range interactions after the quasi-1D mapping. For the
TLI model with NN (J1) and NNN (J2) interactions considered in this work, we
map the 2D lattice into a quasi-1D geometry following a snake-like path. The
Hamiltonian thus contains “long-range” interactions and has an efficient MPO
representation with geometric bond dimension DH= 2W+ 2, with W the width of
the lattice. In XTRG calculations, the computational costs scale with power O(D4),
with D the retained bond dimension in MPO, which is chosen as large as 500–600
in the present study, assuring accurate thermodynamical results down to sub-
Kelvin regime.

QMC-SAC approach. We exploit the path integral QMC37, equipped with SAC
approach, to compute the dynamical properties. The time displaced correlated
function, defined as G(τ)= 〈Sz(τ)Sz(0)〉, for a set of imaginary times τi(i=
0, 1, ⋯ , Lτ) with statistical errors can be obtained from QMC simulations. By SAC
method28,29,31,32, the corresponding real-frequency spectral function S(ω) can be
obtained via SðτÞ ¼ R1

�1dωSðωÞKðτ;ωÞ, where the kernel K(τ, ω) depends on the
type of the spectral function, i.e., fermionic or bosonic, finite or zero temperature.
The spectra at positive and negative frequencies obey the relation of S(−ω)=
e−βωS(ω) and we are restricted at the positive frequencies and the kernel can
therefore be written as Kðτ;ωÞ ¼ 1

π ðe�τω þ e�ðβ�τÞωÞ. To work with a spectral
function that is itself normalized to unity, we further modify the kernel and the
spectral function, and arrive at the transformation between the imaginary time
Green’s function G(q, τ) and real-frequency spectral function B(q, ω)

Gðq; τÞ ¼
Z 1

0

dω
π

e�τω þ e�ðβ�τÞω

1þ e�βω
Bðq;ωÞ ð4Þ

where B(q, ω)= S(q, ω)(1 + e−βω).
In the practical calculation, we parametrize the B(q, ω) with a large number of

equal-amplitude δ-functions sampled at locations in a frequency continuum as
BðωÞ ¼ PNω�1

i¼0 aiδðω� ωiÞ. Then the relationship between Green’s function
obtained from Eq. (4) and from QMC can be described by the goodness of fit χ2, i.e.,
χ2 ¼ PNτ

i¼1

PNτ
j¼1ðGi � GiÞC�1

ij ðGj � GjÞ, where Gi is the average of QMC

measurement and Cij is covariance matrix Cij ¼ 1
NBðNB � 1Þ

PNB
b¼1ðGb

i � GiÞðGb
j � GjÞ,

with NB the number of bins. Then we update the series of δ-functions in a Metropolis
process, from (ai, ωi) to ða0i;ω0

iÞ, to get a more probable configuration of B(q, ω). The
weight for a given spectrum follows the Boltzmann distribution
PðBÞ / expð�χ2=2ΘÞ, withΘ a fictitious temperature chosen in an optimal way so as
to give a statistically sound mean χ2-value, while still staying in the regime of
significant fluctuations of the sampled spectra so that a smooth averaged spectral
function is obtained. The resulting spectra will be collected as an ensemble average of
the Metropolis process within the configurational space of {ai, ωi}, as detailed in
refs. 28,29,31,32.
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