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The existence of polar nanoregions (PNRs) endows relaxor ferroelectrics with peculiar behaviors, which

is explained using the compositional fluctuation theory (CFT). Here, by designing relaxor ferroelectric
films with the same configurational entropy (Sconfe), namely ATiO3; and PbBOj, we show that the

compositional heterogeneity is not a prerequisite for PNR formation. Transmission electron microscope
experiments show that PNRs exist in both cubic films, and only the PbBO; film shows remarkable
compositional fluctuation, i.e., the formation of PNRs in ATiOj is not related with the CFT. First-principles
calculations indicate that while the mixing enthalpies of element pairs in ATiO5 are generally close to 0,
resulting in a nearly homogeneous compositional distribution, those of some element pairs in PbBO; are
large negative values, indicating that the compositional fluctuation is rooted in the large negative mixing
enthalpy. This Letter offers a new perspective on the CFT in relaxor ferroelectrics.

DOI: 10.1103/5p94-jpz7

In 1958, SrTiO; — Bi,0O5 - nTiO, was first found to
exhibit relaxation polarization, leading to a high dielectric
constant without ferroelectric properties [1]. Two years
later, Smolenskii et al. discovered that Pb(Mg, 3Nb,/3)0;
showed a broad dielectric peak, distinct from conventional
ferroelectrics [2], marking the start of relaxor ferroelectrics.
Today, by modulating the A- and B-site elements in the
perovskite ABO; structure, various relaxor ferroelectrics
have been synthesized [3—7]. The high-entropy strategy has
also been used to enhance energy storage performance by
introducing multiple cation species at lattice sites, showing
promising applications in advanced power systems [8,9].

Relaxor ferroelectrics are characterized by a gradual
phase transition from paraelectric to ferroelectric without
a distinct Curie temperature (7°.), known as a diffuse
phase transition, which appears as a broad dielectric
peak in the temperature-dependent dielectric constant
curve [8—11]. The temperature at which the maximum
dielectric constant occurs is called the characteristic
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temperature (7,,). Below T, the dielectric constant
decreases with increasing frequency, dielectric loss
increases, and both peaks shift to higher temperatures
[8—11]. The compositional fluctuation theory (CFT) was
proposed to explain this behavior [12-16].

Chemical variations across different polar nanoregions
(PNRs) arise from the occupation of crystal sites by
different elements, leading to compositional fluctuations
[12—16]. During cooling, regions sensitive to composition
transition first, forming PNRs [12-20]. In the transition
range, ferroelectric and paraelectric phases coexist without
a distinct transition point [12-20], explaining the diffuse
phase transition and frequency dispersion [21-27]. The
CFT also supports models like order-disorder theory [28],
micro-macro domain transition [29], and random-field
models [24,30,31]. Gradually, the origins of random-field
formation have expanded to include compositional
differences [12—16], defects [30,31], and strain [30,32],
enriching the theoretical framework. Recent molecular
dynamics simulations also show that PNRs percolate
through the film, rather than being embedded in a nonpolar
matrix [17].
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However, there has been controversy regarding the
CFT and the formation of PNRs. Here, by combining
the mixing enthalpy and the valence state fluctuations of
elements (Fig. S1), we designed and grew two types of
ferroelectric films with the same S.,,5, but different
enthalpies using pulsed laser deposition (see Methods
for details [33]) (Pbo_zBﬂOlcao_zsrozNao_z)Ti03(ATiO3)
and Pb(Ti0.2MgO.ZNbO.erO.ZZHO,Z)03 (PbBO3) The toler-
ance factors are 0.90 and 0.88, respectively (see the
Appendix for details on the experimental design and
growth exploration) [50-60].

X-ray diffraction (XRD) 6 — 26 scans revealed sharp
diffraction peaks for the ATiO; film [Fig. 1(a)], indexed
at (OOL), confirming its single-phase nature. The out-of-
plane lattice parameter matches that of the TbScO; (TSO)
substrate. High-resolution XRD reciprocal space mappings
(RSMs) [Figs. 1(b) and I(c)] revealed that the film and
substrate are coherently aligned, with no deviation in
diffraction peaks, indicating the absence of dislocation
defects. The average out-of-plane lattice constant of the
ATiO; films is 3.91 A. Next, selected area electron
diffraction (SAED) patterns confirmed that the ATiO5 film
has a simple cubic structure [Figs. 1(d)-1(f)]. Traditional
space group determination methods using reciprocal space
data can lead to ambiguities, especially with glide planes
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FIG. 1. Space group of ATiO; films. (a) XRD linear scan of the
30 nm thick ATiOj films grown on a TSO (110), (orthorhombic)
substrate. (b), (c) 002 and 103 RSMs of the 30 nm thick ATiO3
films. (d)-(f) SAED patterns of the 360 nm thick ATiO5 films,
indexed along the [010], [110], [111] zone axis. (g)-(i) HAADF-
STEM images acquired along the [010], [110], [111] directions.
The white solid lines represent mirror symmetry planes.
Blue ellipses, cyan triangles, yellow quadrilaterals, and red
hexagons represent twofold, threefold, fourfold, and sixfold axes,
respectively.

and screw axes. Instead, we used high-angle annular dark-
field scanning transmission electron microscopy (HAADF-
STEM) imaging to determine space groups in real space.
HAADF-STEM images along the [010], [110], and [111]
directions allowed us to identify the 2D plane group
[Figs. 1(g)-1(i)], revealing symmetry elements of pdmm,
p2mm, and p6bmm. Both SAED and the 2D plane group
confirm that the space group of the ATiO; film is Pm3m.

The structural analysis of PbBO; films (Fig. S2) is
similar to ATiO; films. The out-of-plane average lattice
constant of PbBO; is 4.14 A. Geometric phase analysis
confirms a flat, coherent interface between the PbBO; film
and substrate (Fig. S3). Figure S4 shows HAADF-STEM
images of ATiO; and PbBO; films, with lattice spacing, ion
displacement, and rotation angle maps [61]. Despite the
films’ cubic structure, lattice spacing fluctuations suggest
compositional variations affecting lattice expansion or
contraction. Additionally, ion displacement analysis shows
small displacements, implying low remanent polarization
[60,62]. Integrated differential phase contrast images of
the PbBO; film [Fig. S5(a)] revealed variations in oxygen
displacement directions across adjacent unit cells, with
differential phase contrast images showing local electric
field shifts within a few nanometers [Fig. S5(b)]. These
observations suggest that both films may exhibit relaxor
ferroelectric characteristics.

The direction of spontaneous polarization (P) is from
the negative charge to the positive charge. In this Letter, the
direction of P, is also opposite to the direction of ion
displacement [Figs. S5(c) and S5(d)] [19,20]. Figure 2(a)
shows the polarization map from Fig. S4(a), revealing
PNRs around a few nanometers, confirming the relaxor
ferroelectric properties (see supplementary discussion in
the Supplemental Material [33]). X-Ray photoelectron
spectroscopy (XPS) measurements show lower binding
energy shifts for Pb, Ba, Ca, Sr, and Na, indicating electron
gain and valence reduction of A-site atoms due to initial-
state and relaxation effects [Figs. 2(b) and 2(c), Fig. S6(a)].
Interestingly, Ti and O peaks also shift to lower binding
energy, suggesting a charge imbalance in ATiO; films.
XPS analysis shows Pb?>* and Pb%, Ti** and Ti**, the
suboxide state of Sr, and oxygen vacancies coexisting to
balance charge in the ATiO; system (Figs. S7 and S8; see
supplementary analysis in the Supplemental Material).
Figure 2(d) presents the polarization map from Fig. S4(b),
revealing PNRs a few nanometers in size, supporting
relaxor ferroelectric behavior in PbBO; films. PNRs are
uniformly distributed with smooth polarization transitions
at boundaries. The PNRs are not strictly separated, possibly
approaching their behavior near the freezing temperature.
XPS of PbBO; films shows shifts in Ti, Mg, Nb, Zr, and
Zn peaks to higher binding energies [Figs. 2(e) and 2(f),
Fig. S6(b)], suggesting electron loss and increased
valence of the B-site atoms. The O peak shifts higher
energy [Fig. 2(f)], while Pb shifts lower energy, indicating

046801-2



PHYSICAL REVIEW LETTERS 136, 046801 (2026)

@ y , ©

4 547 540" 538 536 534 537 530 528 526

Binding Enérgy (&V)

g

Ampltude (pm)

100 100
BT 0 E 2015007000 5000 500 1000 1500
jotage fotage E (kv/em)

FIG. 2. Relaxation characteristics of ferroelectric ATiO; and
PbBO; films. (a) The P, distribution map of the 30 nm thick
ATiO; films. (b), (c) XPS in-depth analyses of Ti 2p and O 1s
spectra for the 360 nm thick ATiOj; films. The etching time is
labeled in the image. (d) The P distribution map of the 30 nm
thick PbBO; films. (e), (f) XPS in-depth analyses of Pb 4/ and
O 1s spectra for the 360 nm thick PbBO; films. (g), (h) Local
piezoresponse force microscopy (PFM) amplitude and phase
hysteresis loops for the 30 nm thick films. (i) Out-of-plane P-E
loops of the 90 nm thick films.

electron gain and reduced Pb valence [Fig. 2(e)]. These
results show oxidation state fluctuations and charge dis-
proportionation. Similarly, the coexistence of Pb’>* and
Pb’, Ti** and Ti**, Nb>* and Nb**, and oxygen vacancies
helps balance charge in the PbBO; system (Figs. S9-S11).
The butterfly-shaped amplitude loops and square-shaped
phase hysteresis along the out-of-plane direction indicate
ferroelectric switching [Figs. 2(g) and 2(h)]. The coercive
voltage of both films is around 4 V. Both show relaxor
ferroelectric behavior, confirmed by PNR analysis, polari-
zation-electric field (P-E) loops [Fig. 2(i)], and dielectric
spectroscopy [Fig. S12]. Despite having the same nonpolar
Pm3m space group, they display similar PNRs and hys-
teresis loops.

We used super-EDS to probe atomic-scale element
distributions in relaxor ferroelectric films. Figures 3(a)
and 3(b) show atomic-resolution HAADF-STEM images
and super-EDS maps of the ATiO; films. The Ti element is
uniformly distributed, and subtle lattice features of O are
captured despite super-EDS’s lower sensitivity to light
elements. Pb, Ca, and Sr show distinct lattice patterns,
while Ba and Na exhibit weak lattice features. The maps
reveal a random distribution of A-site elements (Pb, Ba, Ca,
Sr, Na) within each atomic column, indicating a disordered
A-site lattice. Figure 3(c) highlights this randomness in the
3D structure, and Fig. 3(d) shows line profiles with
negligible compositional fluctuations in atomic fractions

of each element. We observe peak positions of curve
fluctuations, with a valley forming between adjacent peaks
due to the spacing of A-site atoms. The Sr shows a stronger
signal, and Na a weaker one, but overall, compositional
variation is negligible. Figures S13(a)-S13(c) also confirm
the A-site disorder. To eliminate the effect of sample
thickness (multiple superimposed PNRs), a 5 nm thick
freestanding ATiO;5 film was fabricated with PNR sizes
matching the film thickness (Fig. S14). Super-EDS and line
profiles also showed negligible compositional fluctuations
in the ATiO; film (Fig. S15), consistent with the results in
Figs. 3(a)-3(d). Figures 3(e) and 3(f) show HAADF-STEM
images and super-EDS maps of PbBO; films. Unlike the
ATiO; film, the five elements (Ti, Mg, Nb, Zr, Zn) in
PbBO; tend to aggregate, with significant inhomogeneous
fluctuations and localized clustering in the super-EDS maps
[Fig. 3(f)]. Figure 3(g) highlights B-site element clustering
in the 3D structure of PbBO;. In the Ti map [Fig. 3(f)],
brightness increases with Ti atom density. Nb has the
highest atomic fraction, followed by Ti and Zr, while Mg
and Zn are lower. The maximum atomic fraction fluctuation
reaches 15% [Fig. 3(h)], indicating clustering at adjacent
B-site positions in the cubic lattice. Additional experiments
also confirm this clustering tendency [Figs. S13(d)-S13(f)].

Finally, density functional theory calculations were
performed to quantify the mixing enthalpy contribution
to the Gibbs free energy. Three atomic configurations,
(111), (110), and (001)-type distributions, were studied to
assess the binary mixing enthalpies in ATiO5; and PbBO;
[Fig. 4(a) and Figs. S16 and S17]. The notation (hkl) refers
to the stacking sequence of A/B-site cation layers
perpendicular to the (hkl),;. direction. The results for
the (111) configuration, the most experimentally relevant
case [63,64], are shown in Figs. 4(b) and 4(c). In ATiO;,
binary mixing enthalpies are near 0 kJ/mol, except for
Ca-containing pairs with slight negative values. In contrast,
PbBO; shows substantial negative mixing enthalpies for
Nb-Mg (—152.84 kJ/mol) and Nb-Zn (—117.92 kJ/mol),
while other element pairs fluctuate moderately within
approximately 20 kJ/mol around zero. These character-
istics hold across the other configurations (Figs. S16 and
S17). Subsequently, the overall mixing enthalpy of ATiO;
and PbBO; was calculated from the binary mixing enthal-
pies (see Methods for the calculation of the mixing
enthalpy [33]). ATiO; shows near-zero values [1.098,
1.451, and —2.856 kJ/mol for the (111), (110), and (001)
configurations, respectively], indicating that configuration
entropy dominates and leads to a nearly ideal disordered
solid solution. In contrast, PbBO; has significantly negative
values (—39.584, —35.702, and —46.430 kJ/mol), mainly
due to the anomalous Nb-Mg and Nb-Zn pairs, promoting
atomic clustering and disrupting the uniform distribution of
the disordered solid solution. Importantly, these anomalous
enthalpies originate from pairs with unusual valence
combinations, Nb(+5)-Mg(+2) and Nb(+5)-Zn(+2),
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Compositional fluctuation behavior in relaxor ferroelectric ATiO; and PbBOj films. (a),(b) HAADF-STEM images of the

30 nm thick ATiO; film and corresponding atomic-scale super-EDS maps for Ti, O, Pb, Ba, Ca, Sr, and Na. (c) 3D schematic of the
ATiO; films. (d) Line profiles showing the atomic fraction of individual elements derived from the super-EDS maps in (b).
(e), (f) HAADF-STEM images of the 30 nm thick PbBO; film and corresponding atomic-scale super-EDS maps for Pb, O, Ti, Mg, Nb,
Zr, and Zn. (g) 3D schematic of the PbBO; film. (h) Line profiles showing the atomic fraction of individual elements derived from the

super-EDS maps in (f).
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FIG. 4. Atomic configurations and mixing enthalpy of (111)-
type binary solid solution. (a) Schematic illustrations of A-site
(left) and B-site (right) configurations. The A-site cations (A1 and
A2) are occupied by Pb, Ba, Ca, Sr, and Na, while the B-site
cations (B1 and B2) are occupied by Ti, Mg, Nb, Zr, and Zn.
(b) Calculated mixing enthalpy for A-site binary solid solutions.
(c) Calculated mixing enthalpy for B-site binary solid solutions.
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which corroborates our earlier hypothesis. Unlike studies
of artificial architectures with relaxorlike behavior in
BaTiO;/BaZrO; superlattices [32], this Letter shows that
in ATiOs, PNRs can form with minimal enthalpic driving
force for chemical clustering, as high configurational
entropy alone does not guarantee the presence of chemical
fluctuation.

In summary, the STEM experiment reveals the presence
of PNRs in both film types, with significant compositional
fluctuations in the PbBO; film, suggesting certain elements
cluster. The ATiO; lacks detectable compositional varia-
tions, indicating a more disordered distribution. This
indicates that compositional heterogeneity is not a pre-
requisite for the formation of PNRs. Under the condition
of the same S, first-principles calculations show that
while mixing enthalpies in ATiO; are close to zero,
meaning uniform composition, certain element pairs in
PbBO; have large negative mixing enthalpies, causing
compositional fluctuations.
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Appendix:  Experimental  design  and  growth
exploration—Taking the ABO; perovskite structure as the
base unit, we selected five elements with equal molar
ratios for both the A-site and B-site positions, respectively.
Thin films are classified as high-, medium-, or traditional-
entropy when the S5, is greater than 1.5R, between 1R
and 1.5R, or less than 1R, respectively. Based on the
equation [50-52]

N M
Sconfig=—R g x;Inx; + E xjlnx; ,
i=1 cation-site J=1 anion-site

(A1)

with R, N (M), and x;(x;) representing the ideal gas
constant, atomic species and contents at the cation (anion)
sites, respectively, we calculated the S.,,5, of the ATiO;
and PbBO; to be 1.6R, which satisfies the compositional
design requirements for the same high-entropy values. We
also noticed that the valence fluctuations of A-site
elements are relatively small, while the valence
fluctuations of B-site elements are more pronounced, as
shown in Fig. S1. Moreover, we computed their tolerance

factors (7) using the following equation [50,53]:

z:ﬂ (A2)

V2(rg +10)

where ry, rg, and rg are the ionic radii of the A-site, B-
site, and oxygen element, respectively. Previously
synthesized high-entropy oxides are more likely to form
high symmetry structures [54—-60]. The ¢ is used to
determine the structural stability. The reference range for ¢
is 0.77-1.11, with films exhibiting ¢ values between 0.90
and 1.11 being more likely to form a cubic structure. The ¢
values of the ATiO; and PbBO; are 0.90 and 0.88,
respectively. These values suggest that both ATiO; and
PbBO; films tend to form solid solutions with a preference
for the cubic structure. The lattice constant becomes
difficult to predict when multiple elements are mixed to
form a solid solution. By exploring film growth on
different substrates, the optimal substrate is selected by
matching the film’s lattice constant, crystal structure, and
overall quality. This helps rule out the possibility that
PNRs are caused by random fields induced by defects or
misfit strain.
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