能源材料与光电科学团队

团队负责人:姜岩

职务/职称

松山湖材料实验室能源材料与光电科学团队负责人,特聘研究员,博士生导师

研究方向

低维半导体材料的设计合成及新一代低成本高性能薄膜太阳能电池的研发,致力于解决钙钛矿基太阳能电池的市场化过程中面临的一系列问题。
个人学术主页:
◆https://scholar.google.com/citations?hl=zh-CN&user=Q41OENoAAAAJ
◆https://www.researchgate.net/profile/Yan_Jiang38

学习/工作经历

◆ 2010年7月,中山大学材料化学,化学学士
◆ 2015年7月,中国科学院化学研究所,物理化学博士
◆ 2015年8月-2018年9月,日本冲绳科学技术大学(OIST),博士后研究员
◆ 2018年10月-2020年9月,瑞士联邦材料科学技术研究所(Empa),博士后研究员
◆ 2020年10月起,松山湖材料实验室,特聘研究员

主要成果/荣誉

入选国家高层次人才计划;在Nat. Energy, Nat. Commun., Joule, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., 等材料、能源领域国际知名杂志上已发表论文48篇,其中8篇被ESI评选为高引用论文 (前1%),1篇被评选为热点论文 (前0.1%),总引用次数超过3400次。

团队成员

 

招聘信息:

课题组长期招聘联合培养硕士、博士研究生及博士后研究员若干名,点击进入【招聘详情】

 

团队简介

研究方向一:高性能钙钛矿太阳能电池的研究

能源技术创新是实现工业技术革命的核心。新一代能源技术的发展以智能、绿色、低排放为特征。国家能源发展“十三五”规划指出,能源系统智能化是未来能源领域发展的一个重要趋势。“十四五”期间,智慧能源系统的建设将以高能效为中心,以需求作为导向。钙钛矿太阳能电池凭借制备成本低,工艺简单,轻质及易集成等特性未来在小型化智能电子器件、可穿戴能源器件,建筑一体化光伏,空天光伏等领域有广泛的应用前景。此外,由钙钛矿电池和晶硅/铜铟镓硒等电池技术结合制备的叠层电池可以将吸收范围从紫外区延申至近红外区(300-1400 nm),从而降低电池的热损耗并大幅度提升电池的光电转换效率。

本项目将选择热力学稳定的钙钛矿材料体系,研发易于放大的钙钛矿薄膜制备工艺,优化钙钛矿单节及叠层电池结构,以降低电池内部的光学及电学损失,提高电池的性能及稳定性。

 

研究方向二: 高灵敏度钙钛矿基X射线探测器及成像技术的研究

X射线探测技术是现代医学成像技术的核心,应用于骨科,乳腺,牙科等透视以及心血管造影等多种检查,其成像结果是肿瘤,心血管等多种重大疾病确诊,救治的关键依据。然而X射线会对人体造成辐射损伤,损伤程度和X射线剂量直接相关。目前数字化X射线探测器市场被Cannon,Siemens,GE,Thales等公司垄断,国内技术相对落后。国家“十三五”医疗器械科技创新专项规划指出,医学影像领域未来的发展以“融合、动态、无创、高清”为方向。其中X射线成像技术的关键性突破在于实现低辐射剂量,高成像分辨率和高成像速度。近5年来,钙钛矿材料(MAPbBr3,Cs2AgBiBr6等)在X射线探测器的应用研发开始起步。和传统材料(α-Se和CsI(TI)闪烁体)相比,钙钛矿材料吸收X射线能力强,辐照下稳定性好,发光效率高,载流子扩散距离长,同时兼具低温和低成本制备等特点,理论上可以实现低辐射剂量,高成像分辨率和高成像速度的要求。

本项目将深入研究钙钛矿的组分,晶体尺寸,成膜厚度,表界面钝化策略等来提高载流子迁移率寿命积,提高直接型探测器信噪比和灵敏度;并深入理解钙钛矿闪烁体的发光机制,降低光学串扰的影响,提高间接型检测器的空间分辨率。

 

仪器设备

 

论文列表

54. Y. Yang, T. Zhao, M.-H. Li, X. Wu, M. Han, S.-C. Yang, Q. Xu, L. Xian, X. Chi, N.-J. Zhao, H. Cui, S. Li, J.-S. Hu, B. Zhang*, Y. Jiang*, Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells, Chem. Eng. J, 2023, 451, 138962.

53. X. Jin, Y. Yang, T. Zhao, X. Wu, B. Liu, M. Han, W. Chen*, T. Chen, J.-S. Hu*, Y. Jiang*, Mitigating Potential Lead Leakage Risk of Perovskite Solar Cells by Device Architecture Engineering from Exterior to Interior, ACS Energy Lett., 2022, 7, 3618-3636.

52. J. Yang, B. Liu, J.-W. Lee, Y. Wang, H. Sun*, Z. Chen, Q. Bai, B. J. Kim, Y. Jiang*, L. Niu*, X. Guo*, Revisiting the Bithiophene Imide-Based Polymer Donor: Molecular Aggregation and Orientation Control Enabling New Polymer Donors for High-Performance All-Polymer Solar Cells, Chin. J. Chem. 2022, 40, 10.1002/cjoc.202200472.

51. J. Wu, M.-H. Li, Y. Jiang*, Q. Xu, L. Xian, H. Guo, J. Wan, R. Wen, Y. Fang, D. Xie, Y. Lei, J.-S. Hu*, Y. Lin*, Carrier Management via Integrating InP Quantum Dots into Electron Transport Layer for Efficient Perovskite Solar Cells, ACS Nano, 2022, 16, 15063-15071.

50. B. Liu, L. Zhang, Y. Jiang*, L. Ding*, Failure pathways of perovskite solar cells in space, J. Semicond., 2022, 43, 100201.

49. Y. Jiang*, S. He, L. Qiu*, Y. Zhao, Y. B. Qi*, Perovskite solar cells by vapor deposition based and assisted methods, Appl. Phys. Rev., 2022, 9, 021305.

48. F. Qiu, M.-H. Li, S. Wang, Y. Jiang*, J.-J. Qi*, J.-S. Hu*, Strain relaxation and domain enlargement via phase transition towards efficient CsPbI2Br solar cells, J. Mater. Chem. A, 2022, 10, 3513-3521.

47. M.-H. Li, F. Qiu, S. Wang, Y. Jiang*, J. Hu*, Hole transporting materials in inorganic CsPbI3−xBrx solar cells: Fundamentals, criteria and opportunities, Mater. Today, 2022, 52, 250-268.

46. F. Qiu, M.-H. Li, S. Wang, J. Y. Sun, Y. Jiang*, J.-J. Qi*, J.-S. Hu*, Regulating the crystalline phase of intermediate films enables FA1−xMAxPbI3 perovskite solar cells with efficiency over 22%, J. Mater. Chem. A, 2021, 9, 24064-24070.

45. L. Qiu*, S. He, Y. Jiang*, Y. B. Qi*, Metal halide perovskite solar cells by modified chemical vapor deposition, J. Mater. Chem. A, 2021, 9, 22759-22780.

44. M.-H. Li, J.-Y. Shao, Y. Jiang*, F.-Z. Qiu, S. Wang, J. Zhang, G. Han, J. Tang, F. Wang, Z. Wei, Y. Yi, Y.-W. Zhong*, J.-S. Hu*, Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93% CsPbI2Br Solar Cells, Angew. Chem. Int. Ed., 2021, 60, 16388-16393.

43. Y. Jiang*, Y. B. Qi*, Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology, Mater. Chem. Front., 2021, 5, 4833-4850.

42. F.-Z. Qiu, M.-H. Li, J.-J. Qi, Y. Jiang*, J.-S. Hu*, Engineering inorganic lead halide perovskite deposition toward solar cells with efficiency approaching 20%, Aggregate, 2021, 2, 66-83.

41. T. Kim, D.-Y. Son, L. K. Ono, Y. Jiang, Y. B. Qi*, A solid–liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture, J. Phys. D Appl. Phys. 2021, 54, 475501.

40. T. Moser, K. Artuk, Y. Jiang*, T. Feurer, E. Gilshtein, A. N. Tiwari, F. Fu*, Revealing the perovskite formation kinetics during chemical vapour deposition, J. Mater. Chem. A, 2020, 8, 21973-21982.

39. R. K. Kothandaraman, Y. Jiang*, T. Feurer, A. N. Tiwari, F. Fu*, Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics, Small Methods 2020, 4, 2000395.

38. Y. Jiang*, T. Reurer, R. Carron, G. T. Sevilla, T. Moser, S. Pisoni, R. Erni, M. D. Rossell, M. Ochoa, A. N. Tiwari and F. Fu*, High-Mobility In2O3:H Electrodes for Four-Terminal Perovskite/CuInSe2 Tandem Solar Cells, ACS Nano 2020, 14, 7502-7512.

37. Y. Jiang* S. Yang, S. Pisoni, T. Moser, S. Buecheler, A. N. Tiwari, F. Fu*, Mitigation of Vacuum and Illumination-Induced Degradation in Perovskite Solar Cells by Structure Engineering, Joule, 2020, 4, 1087-1103.

36. Z. Liu, L. Qiu, L. K. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D. Y. Son, Y. Dang, S. Kazaoui and Y. B. Qi*, A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000 hour operation stability, Nature Energy, 2020, 5, 596–604.

35. S. Pisoni*, M. Stolterfoht, Y. Shynkarenko, J. Loeckinger, T. Moser, Y. Jiang, P. Caprioglio, D. Neher, S. Buecheler and A. N. Tiwari, On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells, Sci. Technol. Adv. Mater. 2019, 20, 786-795.

34. Y. Jiang, L. Qiu, E. J. Juarez-Perez, L. K. Ono, Z. Hu, Z. Liu, Z. Wu, L. Meng, Q. Wang and Y. B. Qi*, Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation, Nat. Energy, 2019, 4, 585-593. († co-first authors, "provide useful data for the evaluation of perovskite module safety", commented by Dr. Sarah Kajari-Schröder in Nature Energy, 4, 534-535 (2019))

33. Y. Jiang, M. Remeika, Z. Hu, E. J. Juarez‐Perez, L. Qiu, Z. Liu, T. Kim, L. K. Ono, D. Y. Son, Z. Hawash, M. R. Leyden, Z. Wu, L. Meng, J. Hu and Y. B. Qi*, Negligible-Pb-Waste and Upscalable Perovskite Deposition Technology for High-Operational-Stability Perovskite Solar Modules, Adv. Energy Mater. 2019, 9, 1803047.

32. L. Qiu†, S. He†, Y. Jiang, D. Y. Son, L. K. Ono, Z. Liu, T. Kim, T. Bouloumis, S. Kazaoui, and Y. B. Qi*, Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency, J. Mater. Chem. A 2019, 7, 6920-6929.

31. Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu, Y. Jiang, L. K. Ono, and Y. B. Qi*, Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface, Adv. Mater. 2019, 31, 1804284.

30. L. Qiu†, Z. Liu†, L. K. Ono, Y. Jiang, D. Y. Son, Z. Hawash, S. He, and Y. B. Qi*, Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer, Adv. Funct. Mater. 2019, 29, 1806779.

29. Y. Jiang, M. R. Leyden, L. Qiu, S. Wang, L. K. Ono, Z. Wu, E. J. Juarez-Perez, Y. B. Qi*, Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability, Adv. Funct. Mater. 2018, 28, 201703835.

28. Z. Liu, L. Qiu, E. J. Juarez-Perez, Z. Hawash, T. Kim, Y. Jiang, Z. Wu, S. R. Raga, L. K. Ono, S. (Frank) Liu and Y. B. Qi*, Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules, Nat. Commun. 2018, 9, 3880.

27. A. García‐Fernández, E. J. Juarez‐Perez*, S. Castro‐García, M. Sánchez‐Andújar, L. K. Ono, Y. Jiang and Y. B. Qi*, Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications, Small Methods, 2018, 2, 1800242.

26. L. K. Ono, T. Kim, Y. Jiang, Y. B. Qi*, and S. (Frank) Liu*, “Heat Wave” of Metal Halide Perovskite Solar Cells Continues in Phoenix, ACS Energy Lett. 2018, 3, 1898-1903.

25. L. K. Ono, Z. Hawash, E. J. Juarez-Perez, L. Qiu, Y. Jiang, and Y. B. Qi*, The influence of secondary solvents on the morphology of a spiro-MeOTAD hole transport layer for lead halide perovskite solar cells, J. Phys. D. 2018, 51, 294001.

24. E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. B. Qi*, Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability, J. Mater. Chem. A, 2018, 6, 9604-9612.

23. J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L. K. Ono, Y. B. Qi*, Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes, Adv. Energy Mater., 2018, 8, 1800504.

22. Z. Wu, S. R. Raga, E. J. Juarez-Perez, X. Yao, Y. Jiang, L. K. Ono, Z. Ning, H. Tian, and Y. B. Qi*, Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammonium-Based Additives, Adv. Mater. 2018, 3, 1703670.

21. R. Bian, Y. Jiang, Y. Wang, J. Sun, J. Hu,* L. Jiang, and H. Liu*, Highly Boosted Microbial Extracellular Electron Transfer by Semiconductor Nanowire Array with Suitable Energy Level, Adv. Funct. Mater., 2018, 28, 1707408.

20. S. R. Raga†, Y. Jiang, L. K. Ono, Y. B. Qi*, Application of Methylamine Gas in Fabricating Organic–Inorganic Hybrid Perovskite Solar Cells, Energy Technol., 2017, 5, 1750-1761. († co-first authors)

19. J. Sun, Y. Jiang, X. Zhong, J. Hu* and L. Wan, Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells, Nano Energy, 2017, 32, 130-156. († co-first authors)

18. M. R. Leyden, L. Meng, Y. Jiang, L. K. Ono, L. Qiu, E. J. Juárez-Pérez, C. Qin, C. Adachi, Y. B. Qi*, Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition, J. Phys. Chem. Lett., 2017, 8, 3193-3198.

17. L. Qiu, L. K. Ono, Y. Jiang, M. R. Leyden, S. R. Raga, S. Wang, Y. B. Qi*, Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells, J. Phys. Chem. B, 2017, 122, 511-520.

16. Y. Jiang, E. J. Juarez-Perez, Q. Ge, S. Wang, M. R. Leyden, L. K. Ono, S. R. Raga, J. Hu and Y. B. Qi*, Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells, Mater. Horiz. 2016, 3, 548-555.

15. F. Zhang†, Y. Jiang, X. Liu, J. Meng, P. Zhang, H. Liu, G. Yang, G. Li, L. Jiang, L. Wan, J. Hu,* and S. Wang*, Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells, Nano Lett. 2016, 16, 766-772. († co-first authors)

14. S. Wang, Y. Jiang, E. J. Juarez-Perez, L. K. Ono and Y. B. Qi*, Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour, Nature Energy, 2016, 2, 16195.

13. M. R. Leyden, Y. Jiang and Y. B. Qi*, Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability, J. Mater. Chem. A, 2016, 4, 13125-13132.

12. Z. Li, J. Liu, J. Ma, Y. Jiang, Q. Ge, J. Ding, J. Hu*, and L. Wan, Solvent-Assisted Preparation of High-Performance Mesoporous CH3NH3PbI3 Perovskite Solar Cells, J. Nanosci. Nanotechnol. 2016, 16, 844-850.

11. Y. Jiang, B. Yu, Jie Liu, Z. Li, J. Sun, X. Zhong, J. Hu*, W. Song* and L. Wan, Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled ITO@Cu2S Nanowire Array Counter Electrodes, Nano Lett. 2015, 15, 3088-3095.

10. B. Yu, X. Zhang, Y. Jiang, J. Liu, Z. Li, X. Yin J. Hu* and L. Wan*, J. Am. Chem. Soc., Solvent-Induced Oriented Attachment Growth of Air-Stable Phase-Pure Pyrite FeS2 Nanocrystals, 2015, 137, 2211-2214.

9. X. Zhang, Y. Zhang, B. Yu, X. Yin, W. Jiang, Y. Jiang, J. Hu* and L. Wan, Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A, 2015, 3, 19277-19281.

8. Y. Jiang, X. Zhang, Q. Ge, B. Yu, Y. Zou, W. Jiang, J. Hu*, W. Song,* and L. Wan, Engineering the Interfaces of ITO@Cu2S Nanowire Arrays toward Efficient and Stable Counter Electrodes for Quantum-Dot-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 2014, 6, 15448-15455.

7. Y. Jiang, X. Zhang, Q. Ge, B. Yu, Y. Zou, W. Jiang, W. Song*, L. Wan* and J. Hu*, ITO@Cu2S Tunnel Junction Nanowire Arrays as Efficient Counter Electrode for Quantum-Dot-Sensitized Solar Cells, Nano Lett., 2014, 14, 365-372.

6. Y. Yu, C. Cao, H. Liu, P. Li, F. Wei, Y. Jiang and W. Song*, A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity, J. Mater. Chem. A, 2014, 2, 1677-1681.

5. Y. Zou, J. Liu, X. Zhang, Y. Jiang, J. Hu* and L. Wan*, Carbon-free Cu2ZnSn(S,Se)4 film prepared via a non-hydrazine route, Sci. China Chem., 2014, 11, 1552-1558.

4. W. Jiang, J. Hu,* X. Zhang, Y. Jiang, B.Yu, Z. Wei* and L. Wan*, In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction, J. Mater. Chem. A, 2014, 2, 10154-10160.

3. X. Zhang, L. Yang, Y. Jiang, B. Yu, Y. Zou, Y. Fang, J. Hu* and L. Wan, Facile Solution Synthesis and Photoelectric Properties of Monolithic Tin(II) Sulfide Nanobelt Arrays, Chem. Asian J. 2013, 8, 2483-2488.

2. H. Liu, C. Cao, F. Wei, Y. Jiang, Y. Sun, P., and W. Song*, Fabrication of Macroporous/Mesoporous Carbon Nanofiber Using CaCO3 Nanoparticles as Dual Purpose Template and Its Application as Catalyst Support, J. Phys. Chem. C, 2013, 117, 21426-21432.

1. F. Niu, Y. Jiang and W. Song*, In situ loading of Cu2O nanoparticles on a hydroxyl group rich TiO2 precursor as an excellent catalyst for the Ullmann reaction, Nano Res., 2010, 3, 757-763.